PII: S0040-4039(96)01539-0

Asymmetric Diels-Alder: Monobenzylated Isosorbide and Isomannide as Highly Effective Chiral Auxiliaries

André Loupy *, Daphné Monteux

Laboratoire des Réactions Sélectives Sur Supports, Associé au CNRS, Bâtiment 410, Université de Paris-Sud, 91405, Orsay France.

Abstract: Lewis acid promoted Diels-Alder reactions of acrylate esters from monobenzylated isosorbide or isomannide and cyclopentadiene provided exclusively *endo*-adducts with good yields and high diastereoselectivities. The R/S selectivities are quasi total and opposed using either isosorbide or isomannide derivatives. Copyright © 1996 Published by Elsevier Science Ltd

1,4:3,6 dianhydro-D-glucitol (isosorbide) 1 is an important well-documented by-product of the starch industry obtained by dehydration of D-glucitol¹. It is thermally stable, of low cost, and available in large quantities. Since a few years, our laboratory bears interest on this compound and their monobenzylated derivatives in position 2 or 5^{2,3}. These chiral monoalcohols are consequently serious candidates in asymmetric synthesis⁴.

In this paper, we report the results obtained for the Diels-Alder reaction of acrylate 3 derived from *exo*-monobenzylated isosorbide 2 with cyclopentadiene (Scheme 1).

Scheme 1

Different Lewis acids were tested as well as montmorillonites which were previously shown to be efficient in this procedure^{5,6}. The Diels-Alder reaction of chiral dienophile 3 and cyclopentadiene was carried out in different solvents. The analysis of the cycloadducts was performed using ¹H NMR. The diastereomeric ratio

was determined by ¹H NMR and confirmed by visualization, after reduction with LiAlD4, of enantiomers in a polybenzyl L-glutamate liquid-crystal through deuterium NMR⁷ spectroscopy which also allows the determination of absolute configurations⁸.

Table 1 Diels-Alder Reactions of Acrylate Ester from Isosorbide 3 with Cyclopentadiene 9

Entry	Catalyst (equiv.)	Solvent	Temp.°C (time)	Yield a) (%)	Endo/Exo b)	R endo/S endo b) c)
1	-	CH ₂ Cl ₂	20 (24h)	68	60:40	54:46
2	SnCl4 (1)	1)	20(45mn)	7 1	89:11	12:88
3	SnCl4 (2)	11	-78 (15mn)	80	>99:1	9:91
4	•1	11	20 (10mn)	77	>99:1	4:96
5	"	Et ₂ O	20(1h)	74	>99:1	28:72
6	"	PhMe	-78 (30mn)	92	>99:1	12:88
7	TiCl4(2)	CH ₂ Cl ₂	-78 (15mn)	80	>99:1	14:86
8	EtAlCl ₂ (2)	li .	-78 (15mn)	80	>99:1	74:26
9	n	n	20 (15mn)	71	89:11	65:35
10	"	Et ₂ O	20(1h)	60	93:7	87:13
11	ZnCl ₂ (2)	CH ₂ Cl ₂	20(2h)	96	82:18	67:33
12	AlEt ₃ (2)	11	20(15h)	36 f)	70:30	54:46
13	BF3- OEt2(2)	11	20(5h)	29 f)	85:15	72:28
14	KSF d)	11	20(48h)	99	66:34	58:42
15	K10 d)	11	20(48h)	40 t)	69:31	69:31
16	ZnCl ₂ / K ₁₀ d) e)	11	20(16h)	91	83:17	66:34
17	ZnCl ₂ / K10 d)e) (2)	11	20 (several days)	50	>99:1	64:36

a) isolated yields b) determined by ¹H NMR c) confirmed by deuterium NMR spectroscopy

The present Diels-Alder reaction showed the following selectivity:

- 1) Lewis acid with only a single coordination site (EtAlCl₂ and BF₃,OEt₂) showed R-endo selectivity (entries 8-10, 13).
- 2) chelating Lewis acids (SnCl4 and TiCl4) showed S-endo selectivity (entries 2-7).
- 3) solid Brönsted acids (K10 and KSF clays) gave lower yields or/and selectivities (entries 14-17).
- 4) the CH2Cl2 is a better solvent than Et2O or PhMe (entries 4-6).

d) 1g of microwave dried solid for 1 mmole of substrat e) ZnCl2/K10 is a Fluka product (0.35 mmol Zn/g)

f) incomplete reaction

When compared to litterature¹⁰, the results we obtained show the interest of isosorbide derivatives as chiral auxiliary. Results are at least as good or even better than those using classical camphor, menthol or 8-phenyl menthol derivatives¹¹ or more recently L-quebrachitol (a cyclitol)¹², sulfonamido indanols¹³ and 9-anthrylcarbinols¹⁴.

Furthermore, we evaluated the behaviour of monobenzylated isomannide 5 as a very close parent molecule, isomannide 4 being the isomer of isosorbide where both hydroxyl groups in position 2 and 5 are endo (scheme 2).

Scheme 2

Table 2 Diels-Alder Reactions of Acrylate Ester from Isosorbide 6 with Cyclopentadiene in CH₂Cl₂

Entry	Catalyst (equiv.)	Temp.°C (time)	Yield (%)	Endo / Exo	R endo/S endo
18	SnCl4 (2)	-78 (30mn)	20	>99:1	60:40
19	EtAlCl ₂ (2)	-70 (1h)	79	>99:1	95:5
20	ZnCl2 / K10	20 (16h)	93	80:20	66:34 a)

a) absolute configuration was confirmed by optical rotation of alcohol resulting from LiAlH4 reduction of cycloadducts ($[\alpha]^{22}_D + 28$ (c 1.065, EtOH 95%) lit. $[\alpha]^{22}_D + 87$ (c 1.0, EtOH 95%)) 15 .

When compared to isosorbide derivative (Table 1, entry 8), using EtAlCl₂ as a catalyst, a significant improvement in R-endo selectivity is obtained (entry 19).

This result thus constitutes a noticeable complement to the SnCl4-promoted reaction with isosorbide derivative (Table 1, entry 4) where almost complete S-endo selectivity is observed.

The exaltation of R-endo selectivity with the isomannide auxiliary can be due to a π -stacking interaction between acrylate double bond and phenyl moiety from benzylic protection. Further studies are in development to check this point.

Acknowledgments: we are grateful to the Université de Paris-sud and CNRS for financial supports and to MERS for a grant (D.M) and Roquette-Frères for a kind gift of isosorbide and isomannide. We are also indebted to Dr. Arnaud Haudrechy for stimulating discussions.

REFERENCES AND NOTES

- 1. Flèche, G.; Huchette, H. Starch / Stärke 1986, 38, 26-30.
- 2. Abenhaim, D.; Loupy, A.; Munnier, L.; Tamion, R.; Marsais, F.; Quéguiner, G. Carbohydr. Res. 1994, 261, 255-266.
- Tamion, R.; Marsais, F.; Ribéreau, P.; Quéguiner, G.; Abenhaïm, D.; Loupy, A.; Munnier, L. Tetrahedron: Asymmetry 1993. 4, 1879-1890.
- 4. Tamion, R.; Marsais, F.; Ribéreau, P.; Quéguiner, G. Tetrahedron: Asymmetry 1993, 4, 2415-2418.
- 5. Cativiela, C.; Figueras, F.; Fraile, J.M.; Garcia, J.I.; Mayoral, J.A. Tetrahedron: Asymmetry 1991, 2, 953-956.
- 6. Cativiela, C.; Figueras, F.; Fraile, J.M.; Garcia, J.I.; Mayoral, J.A. Tetrahedron: Asymmetry 1993, 4, 223-228.
- a) Bayle, J.P.; Courtieu, J.; Gabetty, E.; Loewenstein, A.; Péchiné, J.M. New J. Chem. 1992, 16, 837-838.
 b) Meddour, A.; Canet, I.; Loewenstein, A.; Péchiné, J.M.; Courtieu, J. J.Am. Chem. Soc. 1994, 116, 9652-9656.
 c) Canet, I.; Meddour, A.; Loewenstein, A.; Péchiné, J.M.; Courtieu, J. J.Am. Chem. Soc. 1995, 117, 6520-6526.
- 8. Meddour, A.; Haudrechy, A.; Berdagué, P.; Picoul, W.; Courtieu, J. Tetrahedron: Asymmetry (submitted for publication).
- 9. Typical procedure: 200 mg of chiral acrylate was dissolved under argon in the adequate solvent before addition of cyclopentadiene (2-5 equivalents). After cooling at the desired temperature, the catalyst is introduced. Reactions were hydrolyzed with NaHCO3 or NH4Cl solutions. They are monitored by tlc and analyzed by ¹H and ¹³C NMR and GC-MS. The order of reactants addition is not important.
- 10. Narasaka, K. Synthesis 1991, 1-11.
- 11. Oppolzer, W.; Angew. Chem. Int. Ed. Engl. 1984, 23, 876-889.
- 12. Akiyama, T.; Horiguchi, N.; Ida, T.; Ozaki, S.; Chem. Lett. 1995, 975-976.
- 13. Carrière, A.; Virgili, A. Tetrahedron: Asymmetry 1996, 7, 227-230.
- 14. Ghosh, A.K.; Mathivanan, P. Tetrahedron: Asymmetry 1996, 7, 375-378.
- Berson, J.A.; Walia, J.S.; Remanick, A.; Suzuki, S.; Reynolds-Warnhoff, P.; Willner, D. J.Am. Chem. Soc. 1961, 83, 3986-3997.

(Received in France 2 July 1996; accepted 6 August 1996)